这篇“如何用Python容错的前缀树实现中文纠错”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇“如何用Python容错的前缀树实现中文纠错”文章吧。
介绍
本文使用 Python 实现了前缀树,并且支持编辑距离容错的查询。文中的前缀树只存储了三个分词,格式为 (分词字符串,频率) ,如:('中海晋西园', 2)、('中海西园', 24)、('中南海', 4),可以换成自己的文件进行数据的替换。在查询的时候要指定一个字符串和最大的容错编辑距离。
实现
class Word:
def __init__(self, word, freq):
self.word = word
self.freq = freq
class Trie:
def __init__(self):
self.root = LetterNode('')
self.START = 3
def insert(self, word, freq):
self.root.insert(word, freq, 0)
def findAll(self, query, maxDistance):
suggestions = self.root.recommend(query, maxDistance, self.START)
return sorted(set(suggestions), key=lambda x: x.freq)
class LetterNode:
def __init__(self, char):
self.REMOVE = -1
self.ADD = 1
self.SAME = 0
self.CHANGE = 2
self.START = 3
self.pointers = []
self.char = char
self.word = None
def charIs(self, c):
return self.char == c
def insert(self, word, freq, depth):
if ' ' in word:
word = [i for i in word.split(' ')]
if depth < len(word):
c = word[depth].lower()
for next in self.pointers:
if next.charIs(c):
return next.insert(word, freq, depth + 1)
nextNode = LetterNode(c)
self.pointers.append(nextNode)
return nextNode.insert(word, freq, depth + 1)
else:
self.word = Word(word, freq)
def recommend(self, query, movesLeft, lastAction):
suggestions = []
length = len(query)
if length >= 0 and movesLeft - length >= 0 and self.word:
suggestions.append(self.word)
if movesLeft == 0 and length > 0:
for next in self.pointers:
if next.charIs(query[0]):
suggestions += next.recommend(query[1:], movesLeft, self.SAME)
break
elif movesLeft > 0:
for next in self.pointers:
if length > 0:
if next.charIs(query[0]):
suggestions += next.recommend(query[1:], movesLeft, self.SAME)
else:
suggestions += next.recommend(query[1:], movesLeft - 1, self.CHANGE)
if lastAction != self.CHANGE and lastAction != self.REMOVE:
suggestions += next.recommend(query, movesLeft - 1, self.ADD)
if lastAction != self.ADD and lastAction != self.CHANGE:
if length > 1 and next.charIs(query[1]):
suggestions += next.recommend(query[2:], movesLeft - 1, self.REMOVE)
elif length > 2 and next.charIs(query[2]) and movesLeft == 2:
suggestions += next.recommend(query[3:], movesLeft - 2, self.REMOVE)
else:
if lastAction != self.CHANGE and lastAction != self.REMOVE:
suggestions += next.recommend(query, movesLeft - 1, self.ADD)
return suggestions
def buildTrieFromFile():
trie = Trie()
rows = [('中海晋西园', 2),('中海西园', 24),('中南海', 4)]
for row in rows:
trie.insert(row[0], int(row[1]))
return trie
def suggestor(trie, s, maxDistance):
if ' ' in s:
s = [x for x in s.split(' ')]
suggestions = trie.findAll(s, maxDistance)
return [str(x.word) for x in suggestions]
if __name__ == "__main__":
trie = buildTrieFromFile()
r = suggestor(trie, '中海晋西园', 1)
print(r)
分析
结果打印:
['中海晋西园', '中海西园']
可以看出“中海晋西园”是和输入完全相同的字符串,编辑距离为 0 ,所以符合最大编辑距离为 1 的要求,直接返回。
“中海西园”是“中海晋西园”去掉“晋”字之后的结果,编辑距离为 1, 所以符合最大编辑距离为 1 的要求,直接返回。
另外,“中南海”和“中海晋西园”的编辑距离为 4 ,不符合最大编辑距离为 1 的要求,所以结果中没有出现。