CesiumJS源码分析

寻技术 JS脚本 2023年09月24日 107

这篇文章主要介绍“CesiumJS源码分析”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“CesiumJS源码分析”文章能帮助大家解决问题。

1. 有什么光

CesiumJS 支持的光的类型比较少,默认场景光就一个太阳光:

// Scene 类构造函数中
this.light = new SunLight();

从上面这代码可知,CesiumJS 目前场景中只支持加入一个光源。

查阅 API,可得知除了

SubLight
之外,还有一个
DirectionalLight
,即方向光。

官方示例代码《Lighting》中就使用了方向光来模拟手电筒效果(flashLight)、月光效果(moonLight)、自定义光效果。

方向光比太阳光多出来一个必选的方向属性:

const flashLight = new DirectionalLight({
  direction: scene.camera.directionWC // 每帧都不一样,手电筒一直沿着相机视线照射
})

这个

direction
属性是一个单位向量即可(模长是 1)。

说起来归一化、规范化、标准化好像都能在网上找到与单位向量类似的意思,都是向量除以模长。

可见,CesiumJS 并没有内置点光源、聚光灯,需要自己写着色过程(请参考 Primitive API 或 CustomShader API)。

2. 光如何转换成 Uniform 以及何时被调用

既然 CesiumJS 支持的光只有一个,那么调查起来就简单了。先给结论:

光是作为 Uniform 值传递到着色器中的。 先查清楚光是如何从

Scene.light
转至 Renderer 中的 uniform 的。

2.1. 统一值状态对象(UniformState)

在 Scene 渲染一帧的过程中,几乎就在最顶部,

Scene.js
模块内的函数
render
就每帧更新着
Context
对象的
uniformState
属性:
function render(scene) {
  const frameState = scene._frameState;
  const context = scene.context;
  const us = context.uniformState;
  // ...
  us.update(frameState);
  // ...
}

这个

uniformState
对象就是 CesiumJS 绝大多数统一值(Uniform)的封装集合,它的更新方法就会更新来自帧状态对象(
FrameState
)的光参数:
UniformState.prototype.update = function (frameState) {
  // ...
  const light = defaultValue(frameState.light, defaultLight);
  if (light instanceof SunLight) { /**/ }
  else { /**/ }
  const lightColor = light.color;
  // 计算 HDR 光到 this._lightColor 上
  // ...
}

那么,这个挂在

Context
上的 uniformState 对象包含的光状态信息,是什么时候被使用的呢?下一小节 2.2 就会介绍。

2.2. 上下文(Context)执行 DrawCommand

在 Scene 的更新过程中,最后

DrawCommand
对象被
Context
对象执行:
function continueDraw(context, drawCommand, shaderProgram, uniformMap) {
  // ...
  shaderProgram._setUniforms(
    uniformMap,
    context._us,
    context.validateShaderProgram
  )
  // ...
}
Context.prototype.draw = function (/* ... */) {
  // ...
  shaderProgram = defaultValue(shaderProgram, drawCommand._shaderProgram);
  uniformMap = defaultValue(uniformMap, drawCommand._uniformMap);
  beginDraw(this, framebuffer, passState, shaderProgram, renderState);
  continueDraw(this, drawCommand, shaderProgram, uniformMap);
}

就在

continueDraw
函数中,调用了
ShaderProgram
对象的
_setUniforms
方法,所有 Uniform 值在此将传入 WebGL 状态机中。
ShaderProgram.prototype._setUniforms = function (/**/) {
  // ...
  const uniforms = this._uniforms;
  len = uniforms.length;
  for (i = 0; i < len; ++i) {
    uniforms[i].set();
  }
  // ...
}

而这每一个

uniforms[i]
,都是一个没有公开在 API 文档中的私有类,也就是接下来 2.3 小节中要介绍的 WebGL Uniform 值封装对象。

2.3. 对 WebGL Uniform 值的封装

进入

createUniforms.js
模块:
// createUniforms.js
UniformFloat.prototype.set = function () { /* ... */ }
UniformFloatVec2.prototype.set = function () { /* ... */ }
UniformFloatVec3.prototype.set = function () { /* ... */ }
UniformFloatVec4.prototype.set = function () { /* ... */ }
UniformSampler.prototype.set = function () { /* ... */ }
UniformInt.prototype.set = function () { /* ... */ }
UniformIntVec2.prototype.set = function () { /* ... */ }
UniformIntVec3.prototype.set = function () { /* ... */ }
UniformIntVec4.prototype.set = function () { /* ... */ }
UniformMat2.prototype.set = function () { /* ... */ }
UniformMat3.prototype.set = function () { /* ... */ }
UniformMat4.prototype.set = function () { /* ... */ }

可以说把 WebGL uniform 的类型都封装了一个私有类。

以表示光方向的

UniformFloatVec3
类为例,看看它的 WebGL 调用:
function UniformFloatVec3(gl, activeUniform, uniformName, location) {
  this.name = uniformName
  this.value = undefined
  this._value = undefined
  this._gl = gl
  this._location = location
}
UniformFloatVec3.prototype.set = function () {
  const v = this.value
  if (defined(v.red)) {
    if (!Color.equals(v, this._value)) {
      this._value = Color.clone(v, this._value)
      this._gl.uniform3f(this._location, v.red, v.green, v.blue)
    }
  } else if (defined(v.x)) {
    if (!Cartesian3.equals(v, this._value)) {
      this._value = Cartesian3.clone(v, this._value)
      this._gl.uniform3f(this._location, v.x, v.y, v.z)
    }
  } else {
    throw new DeveloperError(`Invalid vec3 value for uniform "${this.name}".`);
  }
}

2.4. 自动统一值(AutomaticUniforms)

在 2.2 小节中有一个细节没有详细说明,即

ShaderProgram
_setUniforms
方法中为什么可以直接调用每一个
uniforms[i]
set()

回顾一下:

  • Scene.js
    render
    函数内,光的信息被
    us.update(frameState)
    更新至
    UniformState
    对象中;
  • ShaderProgram
    _setUniforms
    方法,调用
    uniforms[i].set()
    方法, 更新每一个私有 Uniform 对象上的值到 WebGL 状态机中

是不是缺少了点什么?

是的,UniformState 的值是如何赋予给 uniforms[i] 的?

这就不得不提及

ShaderProgram.js
模块中为当前着色器对象的 Uniform 分类过程了,查找模块中的
reinitialize
函数:
function reinitialize(shader) {
  // ...
  const uniforms = findUniforms(gl, program)
  const partitionedUniforms = partitionUniforms(
    shader,
    uniforms.uniformsByName
  )
  // ...
  shader._uniformsByName = uniforms.uniformsByName
  shader._uniforms = uniforms.uniform
  shader._automaticUniforms = partitionedUniforms.automaticUniforms
  shader._manualUniforms = partitionedUniforms.manualUniforms
  // ...
}

它把着色器对象上的 Uniform 全部找了出来,并分类为:

  • _uniformsByName
    - 一个字典对象,键名是着色器中 uniform 的变量名,值是 Uniform 的封装对象,例如
    UniformFloatVec3

_uniforms
- 一个数组,每个元素都是 Uniform 的封装对象,例如
UniformFloatVec3
等,若同名,则与
_uniformsByName
中的值是同一个引用

_manualUniforms
- 一个数组,每个元素都是 Uniform 的封装对象,例如
UniformFloatVec3
等,若同名,则与
_uniformsByName
中的值是同一个引用

_automaticUniforms
- 一个数组,每个元素是一个 object 对象,表示要 CesiumJS 自动更新的 Uniform 的映射关联关系

举例,

_automaticUniforms[i]
用 TypeScript 来描述,是这么一个对象:
type AutomaticUniformElement = {
  automaticUniform: AutomaticUniform
  uniform: UniformFloatVec3
}

而这个

_automaticUniforms
就拥有自动更新 CesiumJS 内部状态的 Uniform 值的功能,例如我们所需的光状态信息。

来看

AutomaticUniforms.js
模块的默认导出对象:
// AutomaticUniforms.js
const AutomaticUniforms = {
  // ...
  czm_sunDirectionEC: new AutomaticUniform({ /**/ }),
  czm_sunDirectionWC: new AutomaticUniform({ /**/ }),
  czm_lightDirectionEC: new AutomaticUniform({ /**/ }),
  czm_lightDirectionWC: new AutomaticUniform({ /**/ }),
  czm_lightColor: new AutomaticUniform({
    size: 1,
    datatype: WebGLConstants.FLOAT_VEC3,
    getValue: function (uniformState) {
      return uniformState.lightColor;
    },
  }),
  czm_lightColorHdr:  new AutomaticUniform({ /**/ }),
  // ...
}
export default AutomaticUniforms

所以,在

ShaderProgram.prototype._setUniforms
执行的时候,其实是对自动统一值有一个赋值的过程,然后才到各个
uniforms[i]
set()
过程:
ShaderProgram.prototype._setUniforms = function (
  uniformMap,
  uniformState,
  validate
) {
  let len;
  let i;
  // ...
  const automaticUniforms = this._automaticUniforms;
  len = automaticUniforms.length;
  for (i = 0; i < len; ++i) {
    const au = automaticUniforms[i];
    au.uniform.value = au.automaticUniform.getValue(uniformState);
  }
  // 译者注:au.uniform 实际上也在 this._uniforms 中
  // 是同一个引用在不同的位置,所以上面调用 au.automaticUniform.getValue 
  // 之后,下面 uniforms[i].set() 就会使用的是 “自动更新” 的 uniform 值
  const uniforms = this._uniforms;
  len = uniforms.length;
  for (i = 0; i < len; ++i) {
    uniforms[i].set();
  }
  // ...
}

也许这个过程有些乱七八糟,那就再简单梳理一次:

  • Scene 的 render 过程中,更新了 uniformState

  • Context 执行 DrawCommand 过程中,ShaderProgram 的 _setUniforms 执行所有 uniforms 的 WebGL 设置,这其中就会对 CesiumJS 内部不需要手动更新的 Uniform 状态信息进行自动刷新

  • 而在 ShaderProgram 绑定前,早就会把这个着色器中的 uniform 进行分组,一组是常规的 uniform 值,另一组则是需要根据 AutomaticUniform(自动统一值)更新的 uniform 值

说到底,光状态信息也不过是一种 Uniform,在最原始的 WebGL 学习教材中也是如此,只不过 CesiumJS 是一个更复杂的状态机器,需要更多逻辑划分就是了。

3. 在着色器中如何使用

上面介绍完光的类型、在 CesiumJS 源码中如何转化成 Uniform 并刷入 WebGL,那么这一节就简单看看光的状态 Uniform 在着色器代码中都有哪些使用之处。

3.1. 点云

PointCloud.js 使用了

czm_lightColor

找到

createShaders
函数下面这个分支:
// Version 1.104
function createShaders(pointCloud, frameState, style) {
  // ...
  if (usesNormals &amp;&amp; normalShading) {
    vs +=
      "    float diffuseStrength = czm_getLambertDiffuse(czm_lightDirectionEC, normalEC); 
" +
      "    diffuseStrength = max(diffuseStrength, 0.4); 
" + // Apply some ambient lighting
      "    color.xyz *= diffuseStrength * czm_lightColor; 
";
  }
  // ...
}

显然,这段代码在拼凑顶点着色器代码,在 1.104 版本官方并没有改变这种拼接着色器代码的模式。

着色代码的含义也很简单,将漫反射强度值乘上

czm_lightColor
,把结果交给
color
的 xyz 分量。漫反射强度在这里限制了最大值 0.4。

漫反射强度来自内置 GLSL 函数

czm_getLambertDiffuse
(参考
packages/engine/Source/Shaders/Builtin/Functions/getLambertDiffuse.glsl

3.2. 冯氏着色法

Primitive API 材质对象的默认着色方法是 冯氏着色法(Phong),这个在

LearnOpenGL
网站上有详细介绍。

调用链:

MaterialAppearance.js
  ┗ TexturedMaterialAppearanceFS.js ← TexturedMaterialAppearanceFS.glsl
    ┗ phong.glsl → vec4 czm_phong()

除了

TexturedMaterialAppearanceFS
外,
MaterialAppearance.js
还用了
BasicMaterialAppearanceFS
AllMaterialAppearanceFS
两个片元着色器,这俩也用到了
czm_phong
函数。

看看

czm_phong
函数本体:
// phong.glsl
vec4 czm_phong(vec3 toEye, czm_material material, vec3 lightDirectionEC)
{
    // Diffuse from directional light sources at eye (for top-down)
    float diffuse = czm_private_getLambertDiffuseOfMaterial(vec3(0.0, 0.0, 1.0), material);
    if (czm_sceneMode == czm_sceneMode3D) {
        // (and horizon views in 3D)
        diffuse += czm_private_getLambertDiffuseOfMaterial(vec3(0.0, 1.0, 0.0), material);
    }
    float specular = czm_private_getSpecularOfMaterial(lightDirectionEC, toEye, material);
    // Temporary workaround for adding ambient.
    vec3 materialDiffuse = material.diffuse * 0.5;
    vec3 ambient = materialDiffuse;
    vec3 color = ambient + material.emission;
    color += materialDiffuse * diffuse * czm_lightColor;
    color += material.specular * specular * czm_lightColor;
    return vec4(color, material.alpha);
}

函数内前面的计算步骤是获取漫反射、高光值,走的是辅助函数,在这个文件内也能看到。

最后灯光

czm_lightColor
和材质的漫反射、兰伯特漫反射、材质辉光等因子一起相乘累加,得到最终的颜色值。

除了

phong.glsl
外,参与半透明计算的
czm_translucentPhong
函数(在
translucentPhong.glsl
文件中)在 OIT.js 模块中用于替换
czm_phong
函数。

3.3. 地球

Globe.js
中使用的
GlobeFS
片元着色器代码中使用到了
czm_lightColor
,主要是
main
函数中:
void main() {
// ...
#ifdef ENABLE_VERTEX_LIGHTING
    float diffuseIntensity = clamp(czm_getLambertDiffuse(czm_lightDirectionEC, normalize(v_normalEC)) * u_lambertDiffuseMultiplier + u_vertexShadowDarkness, 0.0, 1.0);
    vec4 finalColor = vec4(color.rgb * czm_lightColor * diffuseIntensity, color.a);
#elif defined(ENABLE_DAYNIGHT_SHADING)
    float diffuseIntensity = clamp(czm_getLambertDiffuse(czm_lightDirectionEC, normalEC) * 5.0 + 0.3, 0.0, 1.0);
    diffuseIntensity = mix(1.0, diffuseIntensity, fade);
    vec4 finalColor = vec4(color.rgb * czm_lightColor * diffuseIntensity, color.a);
#else
    vec4 finalColor = color;
#endif
// ...
}

同样是先获取兰伯特漫反射值(使用

clamp
函数钉死在 [0, 1] 区间内),然后将颜色、
czm_lightColor
、漫反射值和透明度一起计算出
finalColor
,把最终颜色值交给下一步计算。

这里区分了两个宏分支,受

TerrainProvider
影响,有兴趣可以追一下
GlobeSurfaceTileProvider.js
模块中
addDrawCommandsForTile
函数中
hasVertexNormals
参数的获取。

3.4. 模型架构中的光着色阶段

在 1.97 大改的

Model API
中,PBR 着色法使用了
czm_lightColorHdr
变量。
czm_lightColorHdr
也是自动统一值(AutomaticUniforms)的一个。

在 Model 的更新过程中,有一个

buildDrawCommands
的步骤,其中有一个函数
ModelRuntimePrimitive.prototype.configurePipeline
会增减
ModelRuntimePrimitive
上的着色阶段:
ModelRuntimePrimitive.prototype.configurePipeline = function (frameState) {
  // ...
  pipelineStages.push(LightingPipelineStage);
  // ...
}

上面是其中一个阶段 &mdash;&mdash;

LightingPipelineStage
,最后在
ModelSceneGraph.prototype.buildDrawCommands
方法内会调用每一个 stage 的
process
方法,调用 shaderBuilder 构建出着色器对象所需的材料,进而构建出着色器对象。过程比较复杂,直接看其中
LightingPipelineStage.glsl
提供的阶段函数:
void lightingStage(inout czm_modelMaterial material, ProcessedAttributes attributes)
{
    // Even though the lighting will only set the diffuse color,
    // pass all other properties so further stages have access to them.
    vec3 color = vec3(0.0);
    #ifdef LIGHTING_PBR
    color = computePbrLighting(material, attributes);
    #else // unlit
    color = material.diffuse;
    #endif
    #ifdef HAS_POINT_CLOUD_COLOR_STYLE
    // The colors resulting from point cloud styles are adjusted differently.
    color = czm_gammaCorrect(color);
    #elif !defined(HDR)
    // If HDR is not enabled, the frame buffer stores sRGB colors rather than
    // linear colors so the linear value must be converted.
    color = czm_linearToSrgb(color);
    #endif
    material.diffuse = color;
}

进入

computePbrLighting
函数(同一个文件内):
#ifdef LIGHTING_PBR
vec3 computePbrLighting(czm_modelMaterial inputMaterial, ProcessedAttributes attributes)
{
    // ...
    #ifdef USE_CUSTOM_LIGHT_COLOR
    vec3 lightColorHdr = model_lightColorHdr;
    #else
    vec3 lightColorHdr = czm_lightColorHdr;
    #endif
    vec3 color = inputMaterial.diffuse;
    #ifdef HAS_NORMALS
    color = czm_pbrLighting(
        attributes.positionEC,
        inputMaterial.normalEC,
        czm_lightDirectionEC,
        lightColorHdr,
        pbrParameters
    );
        #ifdef USE_IBL_LIGHTING
        color += imageBasedLightingStage(
            attributes.positionEC,
            inputMaterial.normalEC,
            czm_lightDirectionEC,
            lightColorHdr,
            pbrParameters
        );
        #endif
    #endif
   // ...
}
#endif

故,存在

USE_CUSTOM_LIGHT_COLOR
宏时才会使用
czm_lightColorHdr
变量作为灯光颜色,参与函数
czm_pbrLighting
计算出颜色值。
关闭

用微信“扫一扫”