Java怎么根据key值修改Hashmap中的value值

寻技术 JAVA编程 2023年12月19日 78

这篇文章主要讲解了“Java怎么根据key值修改Hashmap中的value值”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“Java怎么根据key值修改Hashmap中的value值”吧!

    根据key值修改Hashmap的value值

    如果原来map中没有key,会创建,如果原来有key,会使用value 覆盖掉原来的值

    map.put(key,value);

    这个实现对原值加一(前提是有这个key)

    map.put(key,map.get(key)+1);

    以下可以获取key对应的value,如果没有可以返回默认的value

    map.getOrDefault(key,value);

    HashMap的key更改后能否正确获取value?

    在HashMap 中存放的一系列键值对,其中键为某个我们自定义的类型。放入 HashMap 后,我们在外部把某一个 key 的属性进行更改,然后我们再用这个 key 从 HashMap 里取出元素,这时候 HashMap 会返回什么?

    我们办公室几个人答案都不一致,有的说返回null,有的说能正常返回value。但不论答案是什么都没有确凿的理由。我觉得这个问题挺有意思的,就写了代码测试。结果是返回null。需要说明的是我们自定义的类重写了 hashCode 方法。我想这个结果还是有点意外的,因为我们知道 HashMap 存放的是引用类型,我们在外面把 key 更新了,那也就是说 HashMap 里面的 key 也更新了,也就是这个 key 的 hashCode 返回值也会发生变化。这个时候 key 的 hashCode 和 HashMap 对于元素的 hashCode 肯定一样,equals也肯定返回true,因为本来就是同一个对象,那为什么不能返回正确的值呢?

    测试案例

    这里有 2 个案例,一个是 Person 类,还有一个是 Student 类,我们来验证下以上的观点(附带结论):

    • 修改了对象属性是否会改变它的 hashcode => 是的

    • 在 HashMap 里存取的时候是否会受到修改属性影响取值 => 取值为 null

    package tech.luxsun.interview.luxinterviewstarter.collection;
     
    import lombok.AllArgsConstructor;
    import lombok.Data;
    import lombok.NoArgsConstructor;
    import java.util.HashMap;
     
    /**
     * @author Lux Sun
     * @date 2021/4/22
     */
    public class MapDemo0 {
     
        public static void main(String[] args) {
            HashMap<Object, Object> map = new HashMap<>();
     
            // Person Case
            Person p = new Person("Bob", 12);
            map.put(p, "person");
            System.out.println(p.hashCode());
            System.out.println(map.get(p));
     
            p.setAge(13);
            System.out.println(p.hashCode());
            System.out.println(map.get(p));
     
            // Student Case
            Student stu = new Student("Bob", 12);
            map.put(stu, "student");
            System.out.println(stu.hashCode());
            System.out.println(map.get(stu));
     
            stu.setAge(13);
            System.out.println(stu.hashCode());
            System.out.println(map.get(stu));
        }
    }
     
    @Data
    @AllArgsConstructor
    @NoArgsConstructor
    class Person {
        private String name;
        private Integer age;
     
        public int hashCode() {
            return 123456;
        }
    }
     
    @Data
    @AllArgsConstructor
    @NoArgsConstructor
    class Student {
        private String name;
        private Integer age;
    }

    输出结果

    123456
    person
    123456
    person
    71154
    student
    71213
    null

    源码

    hashCode 源码

    public int hashCode() {
        int PRIME = true;
        int result = 1;
        Object $age = this.getAge();
        int result = result * 59 + ($age == null ? 43 : $age.hashCode());
        Object $name = this.getName();
        result = result * 59 + ($name == null ? 43 : $name.hashCode());
        return result;
    }

    map.get 源码

    /**
     * Returns the value to which the specified key is mapped,
     * or {@code null} if this map contains no mapping for the key.
     *
     * <p>More formally, if this map contains a mapping from a key
     * {@code k} to a value {@code v} such that {@code (key==null ? k==null :
     * key.equals(k))}, then this method returns {@code v}; otherwise
     * it returns {@code null}.  (There can be at most one such mapping.)
     *
     * <p>A return value of {@code null} does not <i>necessarily</i>
     * indicate that the map contains no mapping for the key; it's also
     * possible that the map explicitly maps the key to {@code null}.
     * The {@link #containsKey containsKey} operation may be used to
     * distinguish these two cases.
     *
     * @see #put(Object, Object)
     */
    public V get(Object key) {
        Node<K,V> e;
        return (e = getNode(hash(key), key)) == null ? null : e.value;
    }
     
     
    /**
     * Computes key.hashCode() and spreads (XORs) higher bits of hash
     * to lower.  Because the table uses power-of-two masking, sets of
     * hashes that vary only in bits above the current mask will
     * always collide. (Among known examples are sets of Float keys
     * holding consecutive whole numbers in small tables.)  So we
     * apply a transform that spreads the impact of higher bits
     * downward. There is a tradeoff between speed, utility, and
     * quality of bit-spreading. Because many common sets of hashes
     * are already reasonably distributed (so don't benefit from
     * spreading), and because we use trees to handle large sets of
     * collisions in bins, we just XOR some shifted bits in the
     * cheapest possible way to reduce systematic lossage, as well as
     * to incorporate impact of the highest bits that would otherwise
     * never be used in index calculations because of table bounds.
     */
    static final int hash(Object key) {
        int h;
        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
    }
     
    /**
     * Implements Map.get and related methods
     *
     * @param hash hash for key
     * @param key the key
     * @return the node, or null if none
     */
    final Node<K,V> getNode(int hash, Object key) {
        Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (first = tab[(n - 1) & hash]) != null) {
            if (first.hash == hash && // always check first node
                ((k = first.key) == key || (key != null && key.equals(k))))
                return first;
            if ((e = first.next) != null) {
                if (first instanceof TreeNode)
                    return ((TreeNode<K,V>)first).getTreeNode(hash, key);
                do {
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        return e;
                } while ((e = e.next) != null);
            }
        }
        return null;
    }

    总之

    可以看到先取得了一个table,这个table实际上是个数组。然后在table里面找对应 key 的value。找的标准就是hash等于传入参数的hash, 并且满足另外两个条件之一:k = e.key,也就是说他们是同一个对象,或者传入的 key 的equal目标的 key 。我们的问题出在那个hash(key.hashCode()),可以看到 HashMap 在存储元素时是把 key 的 hashCode 再做了一次hash。得到的hash将最终作为元素存储位置的依据。对应到我们的情况:第一次存储时,hash函数采用key.hashCode作为参数得到了一个值,然后根据这个值把元素存到了某个位置。

    当我们再去取元素的时候,key.hashCode的值已经出现了变化,所以这里的hash函数结果也发生了变化,所以当它尝试去获得这个 key 的存储位置时就不能得到正确的值,导致最终找不到目标元素。要想能正确返回,很简单,把Person类的 hashCode 方法改一下,让它的 hashCode 不依赖我们要修改的属性,但实际开发中肯定不能这么干,我们总是希望当两个对象的属性不完全相同时能返回不同的 hashCode 值。

    所以结论就是当把对象放到 HashMap 后,不要去修改 key 的属性,除非你重写了该实体类的 hashCode 方法不受属性限制。

    关闭

    用微信“扫一扫”