本篇内容主要讲解“ 如何使用C语言实现快速排序”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“ 如何使用C语言实现快速排序”吧!
快速排序的基本思想是:任取待排序数列中的一个数作为 key 值,通过某种方法使得 key 的左边所有的数都比它小,右边的数都比它大;以 key 为中心,将 key 左边的数列与右边的数列取出,做同样的操作(取 key 值,分割左右区间),直至所有的数都到了正确的位置。
上述所提到的某种方法可以有很多种,例如:hoare法、挖坑法、前后指针法。它们虽然做法不相同,但做的都是同一件事——分割出 key 的左右区间(左边的数比 key 小,右边的数比 key 大)。
1. hoare法
方法与步骤
以数列 6,1,2,7,9,3,4,5,8,10 为例:
1.取最左边为 key ,分别有 left 和 right 指向数列的最左端与最右端;
2. right 先走,找到比 key 小的数就停下来;
3. left 开始走,找到比 key 大的数就停下来;
4. 交换 left 与 right 所在位置的数;
5.重复上述操作,right 找小,left 找大,进行交换;
6. right 继续找小;
7. left 继续找大,若与 right 就停下来;
8.交换二者相遇位置与 key 处的值;
此时一趟排序就完成了,此时的数列有两个特点:
1. key 所指向的值(6)已经到了正确的位置;
2. key 左边的数字都比 key 要小,右边的都比 key 要大;
接下来就是递归的过程了,分别对左右区间进行同样的操作:
代码实现
知道了详解步骤,用代码来实现并不困难,但是有很多很多的细节需要注意。(这里的代码未经优化,当前的代码有几种极端的情况不能适应)
void Swap(int* p, int* q)
{
int tmp = *p;
*p = *q;
*q = tmp;
}
void QuickSort(int* a, int begin, int end)
{
//数列只有一个数,或无数列则返回
if (begin >= end)
{
return;
}
int left = begin;
int right = end;
int keyi = left;
while (left < right)
{
//右边先走
while (left < right && a[right] >= a[keyi])
{
right--;
}
while (left < right && a[left] <= a[keyi])
{
left++;
}
Swap(&a[left], &a[right]);
}
Swap(&a[keyi], &a[left]);
QuickSort(a, begin, left - 1);
QuickSort(a, left + 1, end);
}
2. 挖坑法
挖坑法相比于hoare法,思路上更为简单易懂。
方法与步骤
还是以同样的数列 6,1,2,7,9,3,4,5,8,10 为例:
1. 先将第一个数存放到 key 中,形成一个坑位:分别有 left 和 right 指向数列的最左端与最右端;
2. right 先走,找到比 key 小的数,将该数丢到坑里;同时又形成了一个新的坑;
3. left 开始走,找到比 key 大的数,将该数丢到坑里;同时形成一个新的坑;
4. right继续找小,进行重复的操作;
5. left 找大;
6. right 找小;
7. left 找大;
8.若二者相遇就停下来;将 key 值放入坑;
至此,一趟排序已经完成,我们发现此时的数列与hoare具有相同的特点:
1. key 所指向的值(6)已经到了正确的位置;
2. key 左边的数字都比 key 要小,右边的都比 key 要大;
挖坑法、hoare、前后指针法完成一趟排序后都具有相同的特点,所以不同版本的快速排序不一样的只有单趟排序的实现,总体思路都是相同的。
代码实现
void QuickSort(int* a, int begin, int end)
{
if (begin >= end)
{
return;
}
int left = begin;
int right = end;
int key = a[left];
int hole = left;//坑位
while (left < right)
{
while (left < right && a[right] >= key)
{
right--;
}
a[hole] = a[right];
hole = right;
while (left < right && a[left] <= key)
{
left++;
}
a[hole] = a[left];
hole = left;
}
a[hole] = key;
QuickSort(a, begin, hole - 1);
QuickSort(a, hole + 1, end);
}
3. 前后指针法
方法与步骤
以同样的数列为例:
1. 取第一个值为 key ;有 prev 和 cur 分别指向数列开头和 prev 的下一个数;
2. cur 先走,找到比 key 小的数就停下来;
3. ++prev ,交换 prev 与 cur 位置的数;(前两次无需交换,因为自己与自己换没有意义)
4. 重复此步骤;
5. 直到 cur 走完整个数列,交换 prev 与 key 处的值;
至此,第一趟排序就结束了,又是与前两种方法相同的结果;
代码实现
void QuickSort(int* a, int begin, int end)
{
if (begin >= end)
{
return;
}
int prev = begin;
int cur = prev + 1;
int keyi = begin;
while (cur <= end)
{
if (a[cur] < a[keyi] && ++prev != cur)
{
Swap(&a[prev], &a[cur]);
}
cur++;
}
Swap(&a[keyi], &a[prev]);
keyi = prev;
QuickSort(a, begin, keyi - 1);
QuickSort(a, keyi + 1, end);
}
4. 快速排序的缺点与优化
1.快速排序的缺点
我们用三种方式实现了快速排序,其实这三种方式并无明显的优劣之分。但是我们前面设计的快速排序其实是有两个缺点的:
1.在最坏情况下它的的效率极慢;
2.在数据量太大时会造成栈溢出。
那么什么情况是最坏情况呢?答案是,当数据本身就是有序的时候(无论是逆序还是顺序)。在最坏情况下,每次我们的 key 值都是最大或者最小,这样就会使 key 与数列的每个数都比较一次,它的时间复杂度为 O(n^2);
为什么会发生栈溢出呢?因为我们的快速排序是利用递归实现的,有递归调用,就要建立函数栈帧,并且随着递归的深度越深所要建立的函数栈帧的消耗就越大 。如这幅图所示:
2.快速排序的优化
① 三数取中法选 key
为了应对最坏情况会出现时间复杂度为 O(N^2) 的情况,有人提出了三数取中的方法。
旧方法中,我们每次选 key 都是数列的第一个元素。三数取中的做法是,分别取数列的第一个元素、最后一个元素和最中间的元素,选出三个数中不是最大也不是最小的那个数当作 key 值。
有了三数取中,之前的最坏情况立马变成了最好情况。
代码实现
由于hoare法、挖坑法、前后指针法最终的效果都相同且效率差异很小,所以就任意选取一个为例,其余两者都类似。
//三数取中的函数
int GetMidIndex(int* a, int begin, int end)
{
int mid = (begin + end) / 2;
if (a[begin] < a[mid])
{
if (a[mid] < a[end])
{
return mid;
}
else if (a[begin] > a[end])
{
return begin;
}
else
{
return end;
}
}
else // a[begin] > a[mid]
{
if (a[mid] > a[end])
{
return mid;
}
else if (a[begin] < a[end])
{
return begin;
}
else
{
return end;
}
}
}
//hoare法
void QuickSort(int* a, int begin, int end)
{
if (begin >= end)
{
return;
}
int mid = GetMidIndex(a, begin, end);
Swap(&a[mid], &a[begin]);
int left = begin;
int right = end;
int keyi = left;
while (left < right)
{
while (left < right && a[right] >= a[keyi])
{
right--;
}
while (left < right && a[left] <= a[keyi])
{
left++;
}
Swap(&a[left], &a[right]);
}
Swap(&a[keyi], &a[left]);
QuickSort(a, begin, left - 1);
QuickSort(a, left + 1, end);
}
② 小区间优化
随着递归的调用越深入,此时有个很大的缺点就是函数栈帧的消耗很大。但是同时又有一个好处,就是越往下,数列就越接近有序,且此时每个小区间的数据个数特别少。
那么有什么办法可以取其长处避其短处呢?不知道你是否还记得插入排序的特点——数据越接近有序,效率就越高。并且,在数据量极少的情况下,时间复杂度为 O(N^2) 的插入排序与时间复杂度为 O(N*log N) 的快速排序基本没有什么区别。所以,我们干脆就在排序数据量少的数列时,采用插入排序代替。
代码实现
//三数取中的函数
int GetMidIndex(int* a, int begin, int end)
{
int mid = (begin + end) / 2;
if (a[begin] < a[mid])
{
if (a[mid] < a[end])
{
return mid;
}
else if (a[begin] > a[end])
{
return begin;
}
else
{
return end;
}
}
else // a[begin] > a[mid]
{
if (a[mid] > a[end])
{
return mid;
}
else if (a[begin] < a[end])
{
return begin;
}
else
{
return end;
}
}
}
//插入排序
void InsertSort(int* a, int n)
{
for (int i = 0; i < n - 1; i++)
{
int end = i;
int tmp = a[end + 1];
while (end >= 0)
{
if (a[end] > tmp) //大于tmp,往后挪一个
{
a[end + 1] = a[end];
end--;
}
else
{
break;
}
}
a[end + 1] = tmp; //把tmp插入空隙
}
}
//hoare法
void QuickSort(int* a, int begin, int end)
{
if (begin >= end)
{
return;
}
if ((end - begin + 1) < 15)
{
// 小区间用直接插入替代,减少递归调用次数
InsertSort(a+begin, end - begin + 1);
}
else
{
int mid = GetMidIndex(a, begin, end);
Swap(&a[mid], &a[begin]);
int left = begin;
int right = end;
int keyi = left;
while (left < right)
{
while (left < right && a[right] >= a[keyi])
{
right--;
}
while (left < right && a[left] <= a[keyi])
{
left++;
}
Swap(&a[left], &a[right]);
}
Swap(&a[keyi], &a[left]);
QuickSort(a, begin, left - 1);
QuickSort(a, left + 1, end);
}
}
两外两种方法的代码实现已打包完成,可在文末直接取用。
5. 快速排序的非递归实现
快速排序的非递归思路与递归相差无几,唯一不同的是,非递归用栈或队列模拟函数递归建立栈帧的过程。
void QuickSortNonR(int* a, int begin, int end)
{
Stack st;
StackInit(&st);
StackPush(&st, begin);
StackPush(&st, end);
while (!StackEmpty(&st))
{
int right = StackTop(&st);
StackPop(&st);
int left = StackTop(&st);
StackPop(&st);
int keyi = PartSort1(a, left, right);//三种方法任选其一
//int keyi = PartSort2(a, left, right);
//int keyi = PartSort3(a, left, right);
if (keyi + 1 < right)
{
StackPush(&st, keyi + 1);
StackPush(&st, right);
}
if (left < keyi - 1)
{
StackPush(&st, left);
StackPush(&st, keyi - 1);
}
}
StackDestroy(&st);
}
附录